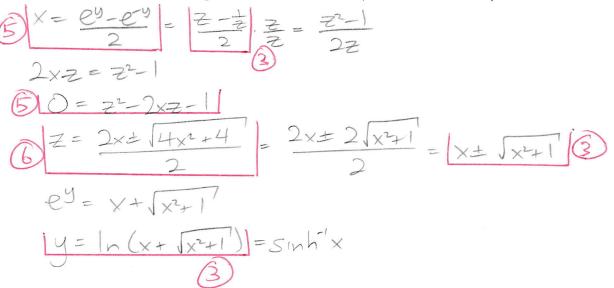


Eliminate the parameter for the parametric equations $\begin{aligned} x &= 2\cos t \\ y &= \cos 2t \end{aligned}$

[b] Based on the results of part [a], what is the minimum interval of the graph you need to plot (before using reflections to draw the rest of the graph)?

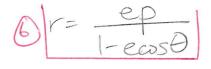

[c]

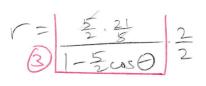
Find all angles **algebraically** in the minimum interval in part [b] at which the graph goes through the pole.

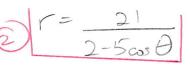
 $(5) 2\sqrt{3} - 4sm 3\Theta = 0$ $\Theta \in [-\Xi, \Xi]$ $\Theta = -\frac{4\pi}{3}, \overline{3}, \overline{3}, \overline{3}$ $\Theta = -\frac{4\pi}{4}, \overline{3}, \overline{3}, \overline{3}$

Find the logarithmic formula for $\sinh^{-1} x$ by solving $x = \sinh y$ for y

using the exponential definition and an algebraic substitution $z = e^{y}$ (or a similar substitution).




A hyperbola has a focus at the pole and vertices with <u>rectangular</u> co-ordinates (-3, 0) and (-7, 0). SCORE: ____/ 25 PTS


[a] Find polar co-ordinates for the vertices, using positive values of r and θ . NOTE: You do NOT need to show work.

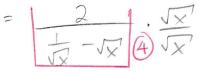
3, 17), (7-1)

[b] Find the **polar** equation of the hyperbola.

$e = \frac{PE}{PQ} = \frac{P'F}{PQ}$	P'IP F'IP
$e = \frac{3}{P^{-3}} = \frac{7}{7-p}$	R
$42 = 10p$ $P = \frac{3}{5}$ $e = \frac{3}{25-3} = \frac{5}{5}$	$= \frac{15}{21-15} = \frac{15}{6} = \frac{5}{2}2$

1-1

AJ throws a football from an initial height of 4 feet, at 18 feet per second, at an angle of 60° with the horizontal. SCORE: _____/ 15 PTS Write parametric equations for the position of the football.


 $X = (v_{a} \cos \theta) t$ V=8 =60° $y = h + (v_0 \sin \theta) t - 16t^2$ $\gamma = 4$ $\begin{array}{c} (18 \cos 60^{\circ})t \\ \hline (18 \sin 60^{\circ})t - 16t^{\circ} \\ \hline (18 \sin 60^{\circ})t - 16t^{\circ} \\ \hline (19 \sin 60^{\circ})t - 1$

Rewrite $\operatorname{csch}(-\frac{1}{2}\ln x)$ in terms of exponential functions and simplify.

SCORE:

/ 10 PTS

2 e-tlnx_ptlnx 3

 $\frac{2\sqrt{x'}}{1-x}$

2

Name the shape of the graphs of the following polar equations. Be as specific as possible. If the graph is a rose curve, state the number of petals.

-

a)
$$r = 5 + 9\sin\theta$$

(a) $r = 5 + 9\sin\theta$
(b) $r = 5\sin\theta$
(c) $r = 5\cos4\theta$
(c) $r = 5\cos4\theta$
(c) $r = 5\cos4\theta$
(c) $r = 5\cos4\theta$
(c) $r = \frac{9}{5 + 4\sin\theta}$
(c) $r = 9 - 4\cos\theta$
(c) $r = 9 - 4\cos\theta$